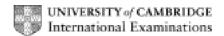
UNIVERSITY OF CAMBRIDGE INTERNATIONAL EXAMINATIONS

International General Certificate of Secondary Education

MARK SCHEME for the October/November 2009 question paper for the guidance of teachers

0620 CHEMISTRY

0620/31


Paper 31 (Extended Theory), maximum raw mark 80

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes must be read in conjunction with the question papers and the report on the examination.

CIE will not enter into discussions or correspondence in connection with these mark schemes.

CIE is publishing the mark schemes for the October/November 2009 question papers for most IGCSE, GCE Advanced Level and Advanced Subsidiary Level syllabuses and some Ordinary Level syllabuses.

Page 2	Mark Scheme: Teachers' version	Syllabus	Paper
	IGCSE – October/November 2009	0620	31

GENERAL INSTRUCTIONS FOR MARKING

- Error carried forward may be allowed in calculations. This will be discussed in the mark scheme. This is not applied when the candidate has inserted incorrect integers or when the answer is physically impossible.
- COND the award of this/these mark(s) is conditional upon a previous mark being awarded.
 Example Is the reaction exothermic or endothermic? Give a reason for your choice.
 Mark scheme exothermic [1]
 - **COND** a correct reason given [1]. This mark can only be awarded if the candidate has recognised that the reaction is exothermic.
- When the name of a chemical is demanded by the question, a **correct** formula is usually acceptable. When the formula is asked for, the name is not acceptable.
- When a word equation is required a **correct** symbol equation is usually acceptable. If an equation is requested then a word equation is not usually acceptable.
- An incorrectly written symbol, e.g. NA **or** CL, should be penalised once in a question.
- In the mark scheme if a word **or** phrase is underlined it (**or** an equivalent) is required for the award of the mark.
 - (.....) is used to denote material that is not specifically required.
- **OR** designates alternative and independent ways of gaining the marks for the question. **or** indicates different ways of gaining the same mark.
- Unusual responses which include correct Chemistry which answer the question should always be rewarded even if they are not mentioned in the marking scheme.

	Page 3		Mark Scheme: Teachers' version	Paper		
			IGCSE – October/November 2009	0620	31	
1	(a) (i)	 a) (i) argon or krypton or helium Accept xenon and radon even though percentages are very small NOT hydrogen 			[1]	
	(ii)	(ii) water and carbon dioxide				
	(b) (i)	(b) (i) sulfur dioxide or lead compounds or CFCs or methane or particulates or unburnt hydrocarbons or ozone etc.				
	(ii)	(ii) <u>incomplete combustion</u> of a fossil fuel or a named fuel or a fuel that contains carbon				
	(iii)	(iii) at high temperature or inside engine nitrogen and oxygen (from the air) react				
	(iv)	(iv) it changes carbon monoxide to carbon dioxide oxides of nitrogen to nitrogen				
			symbol or word equation of the type: $0 + 2CO \rightarrow CO_2 + N_2$		[2]	
		diox	a redox explanation – the oxides of nitrogen oxidis ide, are reduced to nitrogen	e carbon monox	ide to carbon [1] [1]	
			$2NO \rightarrow N_2 + O_2$ $2CO + O_2 \rightarrow 2CO_2$		[1] [1]	
2		(a) pH < 7 example			[1] [1]	
	p⊦ ex N ([1] [1]				
	ex the	pH = 7 example H ₂ O, CO, NO the two marks are not linked, mark each independently NOT amphoteric oxides Be, A <i>l</i> , Zn, Pb, Sn etc.				
	(b) (i)	b) (i) shows both basic and acidic properties			[1]	
	(ii) a named strong acid a named alkali				[1] [1]	

[Total: 9]

-	. ago .		•		Cyllabac	. apo.
				IGCSE – October/November 2009	0620	31
3	(a)	(i)		or roast or burn <u>in air</u> d both points for mark		[1]
		(ii)	or 2	$z + C \rightarrow Zn + CO$ $ZnO + C \rightarrow 2Zn + CO_2$ alanced ONLY [1]		[2]
	(b)	it lo zind	ses e	ore reactive electrons and forms ions in preference to iron odes not iron c rusts		[1] [1] [1]
		the the	elect iron (loses electrons and forms ions rons move on to the iron cannot be oxidised or it cannot rust or it cannot lose el correct Chemistry that includes the above ideas	ectrons	[1] [1] [1]
	(c)	(i)		atoms change into ions, (the zinc dissolves) $per(II)$ ions change into atoms, (becomes plated with c	opper)	[1] [1]
		(ii)	ions elec	trons		[1] [1]
						[Total: 10]
4	4 (a)		differe	M_r or ozone molecules heavier than oxygen molecules ent densities or oxygen molecules move faster than ox		[1] [1]
		OR	fracti	rgen is lighter or ozone heavier ional distillation e different boiling points		[1] [1]
	(b)	(i)		colourless (solution) rown (solution)		[1] [1]
		(ii)		ses electrons (to form iodine molecules) t be in terms of electron transfer NOT oxidation numbe	er	[1]
		(iii)		(electrons) are accepted by ozone is an electron acceptor		[1]

Mark Scheme: Teachers' version

Syllabus

Paper

Page 4

P	age o		Syllabus	Paper
		IGCSE – October/November 2009	0620	31
(c)) (i)	correct structural skeleton COND 4bp around both carbon atoms 2bp and 2nbp around sulfur atom NOTE marks 2 and 3 can only be awarded if mark 1 leads to the second structure.	nas been scored	[1] [1] [1]
	(ii)	water carbon dioxide sulfur dioxide all three any two [1] Accept correct formulae		[2]
				[Total: 11]
(a)) (i)	strong hard light or low density high melting point or high fixed points Accept high strength to weight ratio for [2] it includes marks 1 and 3		
		any THREE		[3]
	(ii)	silicon four		[1] [1]
(b)	ead ead lool "tet	gram to include: th germanium atom bonded 4 oxygen atoms th oxygen to 2 germanium atoms ks or stated to be tetrahedral rahedral" scores mark even if diagram does not look te ependent marking of three points	rtrahedral	[1] [1] [1]
(c)) (i)	structural formula of Ge ₄ H ₁₀ all bonds shown		[1]
	(ii)	germanium(IV) oxide water		[1] [1]
				[Total: 11]
				_

Mark Scheme: Teachers' version

Syllabus

Paper

Page 5

Page 6		Mark Scheme: Teachers' version Syllabus		Paper	
		IGCSE – October/November 2009	0620	31	
(a) (i)		sulfur in air or oxygen eat a metal sulfide in air		[1]	
(ii)	or m	ch for wood pulp/cloth/straw or preserve food or sterili aking wine or fumigant or refrigerant ept making paper	sing	[1]	
(iii)	vanadium(V) oxide accept vanadium oxide or V ₂ O ₅ or vanadium pentoxide oxidation state not essential but if given it has to be (V)			[1]	
(iv)	rate	too slow or rate not economic		[1]	
(v)	reac	tion too violent or forms a mist		[1]	
(b) (i)		water to yellow powder or to anhydrous salt ould go green		[1] [1]	
(ii)		nge from purple or pink blourless NOT clear		[1] [1]	
(iii)	reac	ts with <u>oxygen</u> in air		[1]	
nun mas mas nun volu If m	number of moles of FeSO ₄ used = $9.12/152 = 0.06$ number of moles of Fe ₂ O ₃ formed = 0.03^* mass of one mole of Fe ₂ O ₃ = $160\mathrm{g}$ mass of iron(III) oxide formed = $0.03 \times 160 = 4.8\mathrm{g}$ number of moles of SO ₃ formed = 0.03 volume of sulfur trioxide formed = $0.03 \times 24 = 0.72\mathrm{dm}^3$ If mass of iron(III) oxide greater than $9.12\mathrm{g}$, then only marks 1 and 2 available Apply ecf to number of moles of Fe ₂ O ₃ * when calculating volume of sulfur trioxide. Do not apply ecf to integers				

[Total: 16]

6

		IGCSE – October/November 2009	0620	31	
(a) (i)	heat cata			[1] [1]	
(ii)	alke	an equation that gives: alkene + alkane			
	Oi a	lkene + alkene + hydrogen		[1]	
	a co	rrect and balanced equation for the cracking of decane,	$C_{10}H_{22}$ but not b	out-1-ene [1]	
(iii)	wate	er or steam		[1]	
(b) (i)		$_{9}OH + 6O_{2} \rightarrow 4CO_{2} + 5H_{2}O$ ly error is balancing the oxygen atoms		[2] [1]	
(ii)		nol + methanoic acid → butyl methanoate + water ect products or reactants ONLY		[2] [1]	
(c) (i)	acce pena	ect structural formulae [1] each ept either propanol and –OH in alcohol and acid alise once for CH ₃ type diagrams either C ₃ H ₈ O or C ₃ H ₆ O ₂ [0]		[2]	
(ii)	to co	onserve petroleum or reduce greenhouse effect		[1]	
(d) hav	∕e sar	me boiling point		[1]	

Mark Scheme: Teachers' version

Syllabus

Paper

[Total: 13]

Page 7

7